45 resultados para Recombinant Proteins

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this work was to evaluate protective activity against brain cyst formation in BALB/c mice intranasally vaccinated with recombinant proteins from Toxoplasma gondii. The recombinant proteins rROP2, rGRA5 and rGRA7 were used in vaccine preparation. Thirty-three female mice were divided into three groups, these animals received two doses by intranasal route at days 0 and 21 as follows; group 1 (G1, n = 11) received 12.5 mu g of each recombinant protein plus 0.5 mu g of cholera toxin, group 2 (G2, n = 11) received phosphate buffer saline (PBS) plus 0.5 mu g of cholera toxin, and group 3 (G3, n = 11) received PBS only. At challenge day (day 33) three animals from each group were euthanatized for IgA measure from intestine. Mice were infected orally with 50 cysts from the VEG strain at day 33. At challenge day the G1 animals had high immunoglobulin A levels, however, they only showed IgG antibody titers against rROP2 and rGRAT Animals from G1 also exhibited strong resistance to cyst formation compared with the control group (G3, P < 0.05). However, we did not observe differences in protection against brain cyst formation between G1 and G2 (P > 0.1). These results indicate that intranasal immunization in BALB/c mice with recombinant proteins rROP2, rGRA5 and rGRA7 associated with cholera toxin induced partial protection, when compared with G3, against tissue cyst formation after oral infection with tissue cysts from T gondii. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Eukaryotic translation initiation factor 5A (eIF5A) is the only cellular protein that contains the polyamine-modified lysine, hypusine [N(epsilon)-(4-amino-2-hydroxybutyl)lysine]. Hypusine occurs only in eukaryotes and certain archaea, but not in eubacteria. It is formed post-translationally by two consecutive enzymatic reactions catalyzed by deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). Hypusine modification is essential for the activity of eIF5A and for eukaryotic cell proliferation. eIF5A binds to the ribosome and stimulates translation in a hypusine-dependent manner, but its mode of action in translation is not well understood. Since quantities of highly pure hypusine-modified eIF5A is desired for structural studies as well as for determination of its binding sites on the ribosome, we have used a polycistronic vector, pST39, to express eIF5A alone, or to co-express human eIF5A-1 with DHS or with both DHS and DOHH in Escherichia coli cells, to engineer recombinant proteins, unmodified eIF5A, deoxyhypusine- or hypusine-modified eIF5A. We have accomplished production of three different forms of recombinant eIF5A in high quantity and purity. The recombinant hypusine-modified eIF5A was as active in methionyl-puromycin synthesis as the native, eIF5A (hypusine form) purified from mammalian tissue. The recombinant eIF5A proteins will be useful tools in future structure/function and the mechanism studies in translation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study aims to compare the efficacy of recombinant LH (rLH) supplementation for ovarian stimulation in gonadotrophin-releasing hormone-antagonist protocol for IVF/intracytoplasmic sperm injection cycles. Search strategies included online surveys of databases. The fixed effects model was used for odds ratio (OR) and effect size (weighted mean difference, WMD). Five trials fulfilled the inclusion criteria. When the meta-analysis was carried out, advantages were observed for the LH supplementation protocol with respect to higher serum oestradiol concentrations on the day of human chorionic gonadotrophin administration (P < 0.0001; WMD: 514, 95% CI 368, 660) and higher number of mature oocytes (P = 0.0098; WMD: 0.88, 95% CI 0.21, 1.54). However, these differences were not observed in the total amount of recombinant FSH (rFSH) administered, days of stimulation, number of oocytes retrieved, the clinical pregnancy rate per oocyte retrieval, the implantation rate and miscarriage rate. This result demonstrates that the association of rLH with rFSH may prevent any decrease in oestradiol after antagonist administration and that a significantly higher number of mature oocytes was available for laboratory work. Nevertheless, it failed to show any statistically significant difference in clinically significant end-points in IVF (implantation and pregnancy rates). Additional randomized controlled trials are needed to confirm these results further. © 2007 Published by Reproductive Healthcare Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Eukaryotic translation initiation factor 5A (eIF5A) is the only cellular protein that contains the polyamine-modified lysine, hypusine [Nε-(4-amino-2-hydroxybutyl)lysine]. Hypusine occurs only in eukaryotes and certain archaea, but not in eubacteria. It is formed post-translationally by two consecutive enzymatic reactions catalyzed by deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). Hypusine modification is essential for the activity of eIF5A and for eukaryotic cell proliferation. eIF5A binds to the ribosome and stimulates translation in a hypusine-dependent manner, but its mode of action in translation is not well understood. Since quantities of highly pure hypusine-modified eIF5A is desired for structural studies as well as for determination of its binding sites on the ribosome, we have used a polycistronic vector, pST39, to express eIF5A alone, or to co-express human eIF5A-1 with DHS or with both DHS and DOHH in Escherichia coli cells, to engineer recombinant proteins, unmodified eIF5A, deoxyhypusine- or hypusine-modified eIF5A. We have accomplished production of three different forms of recombinant eIF5A in high quantity and purity. The recombinant hypusine-modified eIF5A was as active in methionyl-puromycin synthesis as the native, eIF5A (hypusine form) purified from mammalian tissue. The recombinant eIF5A proteins will be useful tools in future structure/function and the mechanism studies in translation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hepatitis C virus (HCV) envelope protein 2 (E2) is involved in viral binding to host cells. The aim of this work was to produce recombinant E2B and E2Y HCV proteins in Escherichia coli and Pichia pastoris, respectively, and to study their interactions with low-density lipoprotein receptor (LDLr) and CD81 in human umbilical vein endothelial cells (HUVEC) and the ECV304 bladder carcinoma cell line. To investigate the effects of human LDL and differences in protein structure (glycosylated or not) on binding efficiency, the recombinant proteins were either associated or not associated with lipoproteins before being assayed. The immunoreactivity of the recombinant proteins was analysed using pooled serum samples that were either positive or negative for hepatitis C. The cells were immunophenotyped by LDLr and CD81 using flow cytometry. Binding and binding inhibition assays were performed in the presence of LDL, foetal bovine serum (FCS) and specific antibodies. The results revealed that binding was reduced in the absence of FCS, but that the addition of human LDL rescued and increased binding capacity. In HUVEC cells, the use of antibodies to block LDLr led to a significant reduction in the binding of E2B and E2Y. CD81 antibodies did not affect E2B and E2Y binding. In ECV304 cells, blocking LDLr and CD81 produced similar effects, but they were not as marked as those that were observed in HUVEC cells. In conclusion, recombinant HCV E2 is dependent on LDL for its ability to bind to LDLr in HUVEC and ECV304 cells. These findings are relevant because E2 acts to anchor HCV to host cells; therefore, high blood levels of LDL could enhance viral infectivity in chronic hepatitis C patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Toxoplasma gondii is an intracellular obligate protozoan, which infects humans and warm-blooded animals. The aim of the present study was to clone the rop2, gra5 and gra7 genes from T. gondii RH strain and to produce recombinant proteins. The rop2, gra5 and gra7 gene fragments produced by polymerase chain reaction were cloned into the pET102/D-TOPO(R) vector which contains thioredoxin and polyhistidine tags at the C-and N-ends, respectively, and is expressed in Escherichia coli BL21(DE-3). The expression fusion proteins were found almost entirely in the insoluble form in the cell lysate. These recombinant proteins were purified with an Ni-NTA column. Concentrations of the recombinant antigens produced in the E. coli BL21-star ranged from 300 to 500 mu g/mL growth media, which was used to immunize rabbits. We observed an identity ranging from 96 to 97% when nucleotide sequences were compared to GenBank database sequences. Immunocharacterization of proteins was made by indirect immunofluorescence assay. These proteins will be used for serodiagnosis and vaccination.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Most commercial recombinant proteins used as molecular biology tools, as well as many academically made preparations, are generally maintained in the presence of high glycerol concentrations after purification to maintain their biological activity. The present study shows that larger proteins containing high concentrations of glycerol are not amenable to analysis using conventional electrospray ionization mass spectrometry (ESI-MS) interfaces. In this investigation the presence of 25% (v/v) glycerol suppressed the signals of Taq DNA polymerase molecules, while 1% (v/v) glycerol suppressed the signal of horse heart myoglobin. The signal suppression was probably caused by the interaction of glycerol molecules with the proteins to create a shielding effect that prevents the ionization of the basic and/or acidic groups in the amino acid side chains. To overcome this difficulty the glycerol concentration was decreased to 5% (v/v) by dialyzing the Taq polymerase solution against water, and the cone voltage in the ESI triple-quadrupole mass spectrometer was set at 80-130 V. This permitted observation of a mass spectrum that contained ions corresponding to protonation of up to 50% of the ionizable basic groups. In the absence of glycerol up to 85% of the basic groups of Taq polymerase became ionized, as observed in the mass spectrum at relatively low cone voltages. An explanation of these and other observations is proposed, based on strong interactions between the protein molecules and glycerol. For purposes of comparison similar experiments were performed on myoglobin, a small protein with 21 basic groups, whose ionization was apparently suppressed in the presence of 1% (v/v) glycerol, since no mass spectrum could be obtained even at high cone voltages. Copyright (C) 2003 John Wiley Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Biopharmaceutical drugs are mainly recombinant proteins produced by biotechnological tools. The patents of many biopharmaceuticals have expired, and biosimilars are thus currently being developed. Human granulocyte colony stimulating factor (hG-CSF) is a hematopoietic cytokine that acts on cells of the neutrophil lineage causing proliferation and differentiation of committed precursor cells and activation of mature neutrophils. Recombinant hG-CSF has been produced in genetically engineered Escherichia coli ( Filgrastim) and successfully used to treat cancer patients suffering from chemotherapy-induced neutropenia. Filgrastim is a 175 amino acid protein, containing an extra N-terminal methionine, which is needed for expression in E. coli. Here we describe a simple and low-cost process that is amenable to scaling-up for the production and purification of homogeneous and active recombinant hG-CSF expressed in E. coli cells.Results: Here we describe cloning of the human granulocyte colony-stimulating factor coding DNA sequence, protein expression in E. coli BL21(DE3) host cells in the absence of isopropyl-beta-D-thiogalactopyranoside ( IPTG) induction, efficient isolation and solubilization of inclusion bodies by a multi-step washing procedure, and a purification protocol using a single cationic exchange column. Characterization of homogeneous rhG-CSF by size exclusion and reverse phase chromatography showed similar yields to the standard. The immunoassay and N-terminal sequencing confirmed the identity of rhG-CSF. The biological activity assay, in vivo, showed an equivalent biological effect (109.4%) to the standard reference rhG-CSF. The homogeneous rhG-CSF protein yield was 3.2 mg of bioactive protein per liter of cell culture.Conclusion: The recombinant protein expression in the absence of IPTG induction is advantageous since cost is reduced, and the protein purification protocol using a single chromatographic step should reduce cost even further for large scale production. The physicochemical, immunological and biological analyses showed that this protocol can be useful to develop therapeutic bioproducts. In summary, the combination of different experimental strategies presented here allowed an efficient and cost-effective protocol for rhG-CSF production. These data may be of interest to biopharmaceutical companies interested in developing biosimilars and healthcare community.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hrp1p is a heterogeneous ribonucleoprotein (hnRNP) from the yeast Saccharomyces cerevisiae that is involved in the cleavage and polyadenylation of the 3'-end of mRNAs and mRNA export. In addition, Hrp1p is one of several RNA-binding proteins that are posttranslationally modified by methylation at arginine residues. By using-functional recombinant Hrp1p, we have identified RNA sequences with specific high affinity binding sites. These sites correspond to the efficiency element for mRNA 3'-end formation, UAUAUA. To examine the effect of methylation on specific RNA binding, purified recombinant arginine methyltransferase (Hmt1p) was used to methylate Hrp1p. Methylated Hrp1p binds with the same affinity to UAUAUA-containing RNAs as unmethylated Hrp1p indicating that methylation does not affect specific RNA binding. However, RNA itself inhibits the methylation of Hrp1p and this inhibition is enhanced by RNAs that specifically bind Hrp1p. Taken together, these data support a model in which protein methylation occurs prior to protein-RNA binding in the nucleus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purine nucleoside phosphorylase (PNP) catalyzes the phosphorolysis of the N-ribosidic bonds of purine nucleosides and deoxynucleosides. A genetic deficiency due to mutations in the gene encoding for human PNP causes T-cell deficiency as the major physiological defect. Inappropriate activation of T-cells has been implicated in several clinically relevant human conditions such as transplant tissue rejection, psoriasis, rheumatoid arthritis, lupus, and T-cell lymphomas. Human PNP is therefore a target for inhibitor development aiming at T-cell immune response modulation. In addition, bacterial PNP has been used as reactant in a fast and sensitive spectrophotometric method that allows both quantitation of inorganic phosphate (Pi) and continuous assay of reactions that generate P i such as those catalyzed by ATPases and GTPases. Human PNP may therefore be an important biotechnological tool for P i detection. However, low expression of human PNP in bacterial hosts, protein purification protocols involving many steps, and low protein yields represent technical obstacles to be overcome if human PNP is to be used in either high-throughput drug screening or as a reagent in an affordable P i detection method. Here, we describe PCR amplification of human PNP from a liver cDNA library, cloning, expression in Escherichia coli host, purification, and activity measurement of homogeneous enzyme. Human PNP represented approximately 42% of total soluble cell proteins with no induction being necessary to express the target protein. Enzyme activity measurements demonstrated a 707-fold increase in specific activity of cloned human PNP as compared to control. Purification of cloned human PNP was achieved by a two-step purification protocol, yielding 48 mg homogeneous enzyme from 1 L cell culture, with a specific activity value of 80 U mg -1. © 2002 Elsevier Science (USA). All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Currently, there are 8 million new cases and 2 million deaths annually from tuberculosis, and it is expected that a total of 225 million new cases and 79 million deaths will occur between 1998 and 2030. The reemergence of tuberculosis as a public health threat, the high susceptibility of HIV-infected persons, and the proliferation of multi-drug-resistant strains have created a need to develop new antimycobacterial agents. The existence of homologues to the shikimate pathway enzymes has been predicted by the determination of the genome sequence of Mycobacterium tuberculosis. We have previously reported the cloning and overexpression of M. tuberculosis aro A-encoded EPSP synthase in both soluble and active forms, without IPTG induction. Here, we describe the purification of M. tuberculosis EPSP synthase (mtEPSPS) expressed in Escherichia coli BL21(DE3) host cells. Purification of mtEPSPS was achieved by a one-step purification protocol using an anion exchange column. The activity of the homogeneous enzyme was measured by a coupled assay using purified shikimate kinase and purine nucleoside phosphorylase proteins. A total of 53 mg of homogeneous enzyme could be obtained from 1 L of LB cell culture, with a specific activity value of approximately 18 U mg-1. The results presented here provide protein in quantities necessary for structural and kinetic studies, which are currently underway in our laboratory. © 2002 Elsevier Science (USA). All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Galectin-1 (Gal-1), the prototype of a family of β -galactoside-binding proteins, has been shown to attenuate experimental acute and chronic inflammation. In view of the fact that endothelial cells (ECs), but not human polymorphonuclear leukocytes (PMNs), expressed Gal-1 we tested here the hypothesis that the protein could modulate leukocyte-EC interaction in inflammatory settings. In vitro, human recombinant (hr) Gal-1 inhibited PMN chemotaxis and trans-endothelial migration. These actions were specific as they were absent if Gal-1 was boiled or blocked by neutralizing antiserum. In vivo, hrGal-1 (optimum effect at 0.3 μg equivalent to 20 pmol) inhibited interleukin-1β-induced PMN recruitment into the mouse peritoneal cavity. Intravital microscopy analysis showed that leukocyte flux, but not their rolling velocity, was decreased by an anti-inflammatory dose of hrGal-1. Binding of biotinylated Gal-1 to resting and post-adherent human PMNs occurred at concentrations inhibitory in the chemotaxis and transmigration assays. In addition, the pattern of Gal-1 binding was differentially modulated by PMN or EC activation. In conclusion, these data suggest the existence of a previously unrecognized function of Gal-1, that is inhibition of leukocyte rolling and extravasation in experimental inflammation. It is possible that endogenous Gal-1 may be part of a novel anti-inflammatory loop in which the endothelium is the source of the protein and the migrating PMNs the target for its anti-inflammatory action.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The evolutionarily conserved factor eIF5A is the only protein known to undergo hypusination, a unique posttranslational modification triggered by deoxyhypusine synthase (Dys1). Although eIF5A is essential for cell viability, the function of this putative translation initiation factor is still obscure. To identify eIF5A-binding proteins that could clarify its function, we screened a two-hybrid library and identified two eIF-5A partners in S. cerevisiae: Dys1 and the protein encoded by the gene YJR070C, named Lia1 (Ligand of eIF5A). The interactions were confirmed by GST pulldown. Mapping binding sites for these proteins revealed that both eIF5A domains can bind to Dys1, whereas the C-terminal domain is sufficient to bind Lia1. We demonstrate for the first time in vivo that the N-terminal α-helix of Dys1 can modulate enzyme activity by inhibiting eIF5A interaction. We suggest that this inhibition be abrogated in the cell when hypusinated and functional eIF5A is required. © 2003 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.